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Abstract
Recent small angle scattering experiments reveal new peaks in the structure
function S(k) of colloidal systems (Liu et al 2005 J. Chem. Phys. 122 044507),
in a region that was inaccessible with older instruments. It has been increasingly
evident that a single (or double) Yukawa MSA-closure cannot account for these
observations, and three or more terms are needed. On the other hand the MSA
is not sufficiently accurate (Broccio et al 2005 Preprint); more accurate theories
such as the HNC have been tried. But while the MSA is asymptotically exact
at high densities (Rosenfield and Blum 1986 J. Chem. Phys. 85 1556), it does
not satisfy the low density asymptotics. This has been corrected in the soft
MSA (Blum et al 1972 J. Chem. Phys. 56 5197, Narten et al 1974 J. Chem.
Phys. 60 3378) by adding exponential type terms. The results compared to
experiment and simulation for liquid sodium by Rahman and Paskin (as shown
in Blum et al 1972 J. Chem. Phys. 56 5197) are remarkably good. We use here
a general closure of the Ornstein–Zernike equation, which is not necessarily
the MSA closure (Blum and Hernando 2001 Condensed Matter Theories vol 16
ed Hernandez and Clark (New York: Nova) p 411).

ci j(r) =
M∑

n=1

K(n)
i j e−zn r/r; K(n)

i j = K (n)δ
(n)
i δ

(n)
j ; r � σi j (1)

with the boundary condition for gi j(r) = 0 for r � σi j . This general closure of
the Ornstein–Zernike equation will go well beyond the MSA since it has been
tested by Monte Carlo simulation for tetrahedral water (Blum et al 1999 Physica
A 265 396), toroidal ion channels (Enriquez and Blum 2005 Mol. Phys. 103
3201) and polyelectrolytes (Blum and Bernard 2004 Proc. Int. School of Physics
Enrico Fermi, Course CLV vol 155, ed Mallamace and Stanley (Amsterdam:
IOS Press) p 335). For this closure we get for the Laplace transform of the pair
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correlation function an explicitly symmetric result

2π g̃i j(s) = − e−sσi j

Dτ (s)

⎧
⎨

⎩
1

s2
+ 1

s
Q′

i j (σi j)+
M∑

m=1

zmX̃ (m)
i f (m)j

s + zm

⎫
⎬

⎭ . (2)

This function is also easily transformed into S(k) by replacing s ⇒ ik. For low
density situations (dilute colloids) Dτ (s) ∼ 1 + O(ρ) and S(k) is a sum of M
Lorentzians. For hard sphere PY mixtures we get the simple (compare Lebowitz
1964 Phys. Rev. 133 A895 and Blum and Stell 1979 J. Chem. Phys. 71 42)

2π g̃i j(s) = − e−sσi j

s2 Dτ (s)

{
1 + s

[
(QH S)′i j(σi j)

]}

where Dτ (s) is a scalar function. For polydisperse electrolytes in the MSA
a simpler expression is also obtained (compare Blum and Hoye 1977 J. Phys.
Chem. 81 1311). An explicit continued fraction solution of the one component
multi-Yukawa case is also given.

1. Introduction

There are many problems of practical and academic interest that can be formulated as closures
of some kind of either scalar or matrix Ornstein–Zernike (OZ) [2–12] equation. These closures
can always be expressed by a sum of exponentials, which do form a complete basis set if
we allow for complex numbers [13, 14]. It is of practical interest to be able to relate small
angle scattering experiments as directly as possible to theoretical (molecular) parameters.
For a number of systems the MSA [13, 15, 16] has been generally adequate [1, 17]. The
GOCM, which is a single peak–single Yukawa closure–MSA description, is adequate in the
simple cases. However, recent high resolution experiments have shown that to account for the
additional peaks seen in the SANS experiments more Yukawas are required [2, 18, 19]. The
MSA and HNC closures of the OZ equation slightly underestimate the height of the interaction
peak in the structure factor, whereas a close comparison of the cluster peak position is somewhat
hindered by the limited resolution in Q of the simulation data, because the largest simulation
box is never big enough. In most parts of the practical range of potential parameters, the
theoretical predictions coming from the two closures have comparable accuracy. Therefore, for
fitting the neutron scattering intensity distributions, analytical structure factors are preferable
since the resolution of the equations is more stable and fast.

Our present solution makes the direct comparison between theory and experiment feasible
since a simple expression for the Fourier transform S(Q) is proposed which is directly related to
the closure of the OZ equation. In fact, with a very mild assumption made, the direct correlation
function can be expanded as

ci j(r) =
M∑

n=1

K (n)
i j e−zn (r−σi j )/r =

M∑

n=1

K(n)
i j e−zn r/r; r > σi j . (3)

In the factorizable case (which is also the electrostatic charge case), we have

K (n)
i j = K (n)δ

(n)
i δ

(n)
j ; K(n)

i j = K (n)d(n)i d(n)j ; δ
(n)
i = d(n)i e−znσi/2 (4)

with

gi j(r) = 0 for r � σi j .
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Here zn can be a complex number, and then equation (3) is a complete function basis
set. This closure works very well with a number of potentials, that include Lennard-Jones,
Buckingham, and liquid metals [4, 20]. The effective interaction among charged colloids and
globular proteins in solution is also well described by this potential, which is the sum of a
short range part attraction, usually accounting for van der Waals or entropic forces, plus a
long range repulsion (of up to a few particle diameters), arising from screened electrostatic
potential [21]. The two-Yukawa (2Y) fluid, consisting of particles interacting with this
potential, can be usefully applied to a wide variety of systems such as C60 fullerenes at high
temperature [22], globular proteins [23, 24], and the Derjaguin–Landau–Verwey–Overbeek
(DLVO) [25] potential for lyophobic colloids.

While the initial motivation was to study simple approximations like the mean spherical
(MSA) or generalized mean spherical approximation (GMSA), the availability of closed form
solutions for the general closure of the hard core OZ equation makes it possible to write down
analytical solutions for any given approximation that can be formulated by writing the direct
correlation function c(r) outside the hard core as

c(r) =
M∑

n=1

K (n)e−zn(r−σ )/r =
M∑

n=1

K(n)e−znr/r. (5)

In this equation K (n) is the interaction/closure constant used in the general solution first found
by Blum and Hoye (which we will call BH78) [20], while K(n) is the definition used in the
later general solution by Blum, Vericat and Herrera (BVH92 in what follows) [26]. In this
work we will use the more common notation of BVH92. The case of factored interactions
was discussed by Blum [27, 28] and by Ginoza [29–32]. The general solution of this problem
[26] is given in terms of the scaling matrix Γ, which will comply with the physical constraints
of the systems [14, 33, 34]. The solution of the resulting algebraic equations has a number
of branches [35]. The rigorous analysis of this question is very complex. We have used the
following working hypothesis.

(i) The singularities of the equations are poles, branch cuts and essential (exponential)
singularities.

(ii) The physical branch is the one for which the correct zero density result is obtained. This
is equivalent to what is done in the rigorous treatment van der Waals theory, and includes
metastable regions and spinodals.

(iii) The analysis of the repulsive part of the potential is more delicate since it is clearly
related to the exponential singularities, and the convexity of the limiting high density
configurations [36].

For only one component the matrix Γ can be assumed to be diagonal without loss of
generality, and explicit expressions for the closure relations for any arbitrary number of Yukawa
exponents M were obtained. The solution is then remarkably simple in the MSA since
then explicit formulae for the thermodynamic properties are obtained. However, there are
undetermined integration constants in the entropy which have to be adjusted to get the correct
limiting behaviour [17].

2. Summary of previous work

We study the Ornstein–Zernike (OZ) equation

hi j (12) = ci j(12)+
∑

k

∫
d3 hik(13)ρkck j (32) (6)
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where hi j(12) is the molecular total correlation function and ci j(12) is the molecular direct
correlation function, ρi is the number density of molecules i , i = 1, 2 is the position �ri ,
r12 = |�r1 − �r2| and σi j is the distance of closest approach of two particles i, j . The direct
correlation function is

ci j(r) =
M∑

n=1

K (n)
i j e−zn (r−σi j )/r, r > σi j (7)

and the pair correlation function is

hi j (r) = gi j(r)− 1 = −1, r � σi j . (8)

We use the Baxter–Wertheim (BW) factorization of the OZ equation
[
I + ρH (k)

] [
I − ρC(k)

] = I (9)

where I is the identity matrix, and we have used the notation

H(k) = 2
∫ ∞

0
dr cos(kr)J(r) (10)

C(k) = 2
∫ ∞

0
dr cos(kr)S(r). (11)

The matrices J and S have matrix elements

Ji j(r) = 2π
∫ ∞

r
ds shi j (s) (12)

Si j (r) = 2π
∫ ∞

r
ds sci j(s) (13)

[
I − ρC(k)

] = [
I − ρQ(k)

] [
I − ρQT(−k)

]
(14)

where QT(−k) is the complex conjugate and transpose of Q(k). The first matrix is non-singular
in the upper half complex k-plane, while the second is non-singular in the lower half complex
k-plane.

It can be shown that the factored correlation functions must be of the form

Q(k) = I − ρ

∫ ∞

λ j i

dr eikr Q(r) (15)

where we used the following definition:

λ j i = 1
2 (σ j − σi ) (16)

S(r) = Q(r)−
∫

dr1 Q(r1)ρQT(r1 − r). (17)

Similarly, from equations (14) and (9) we get, using the analytical properties of Q and
Cauchy’s theorem,

J(r) = Q(r)+
∫

dr1 J(r − r1)ρQ(r1). (18)

The general solution is discussed in [27, 29, 34], and yields

qi j(r) = q0
i j(r)+

M∑

n=1

D(n)
i j e−znr λ j i < r (19)

q0
i j(r) = (1/2)A j[(r − σ j/2)

2 − (σi/2)
2] + β j [(r − σ j/2)− (σi/2)]

+
M∑

n=1

C (n)
i j e−znσ j/2[e−zn(r−σ j /2) − e−znσi/2] λ j i < r < σi j . (20)

The parameters A j , β j ,Ci j , Di j are defined below and in appendix A.
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3. The Laplace transforms and the structure functions

From equation (18) we obtain the Laplace transform of the pair correlation function

2π
∑

	

g̃i	(s)[δ	j − ρ	q̃	j (i s)] = q̃0′
i j (i s) (21)

where

q̃0′
i j (i s) =

∫ ∞

σi j

dr e−sr [q0
i j(r)]′ = [(1 + sσi/2)A j + sβ j ]e−sσi j /s2

−
∑

m

zm

s + zm
e−(s+zm )σi j C (m)

i j (22)

and

esλ j i q̃i j(i s) = σ 3
i ψ1(sσi )A j + σ 2

i φ1(sσi )β j +
∑

m

1

s + zm
[(C (m)

i j + D(m)
i j )e

−zmλ j i

− C (m)
i j e−zmσ j i − zmσiφ0(sσi )C

(m)
i j e−zmσ j i ] (23)

where

ψ1(x) = [1 − x/2 − (1 + x/2)e−x]/(x3) = σ 2

2z
e−zσ/2i1(zσ/2)

i1(x) = 1

x2
(sinh x − x cosh x)

φ1(x) = [1 − x − e−x ]/(x2) = xψ1(x)− φ0(x)/2; φ0(x) = [1 − e−x ]
x

.

(24)

In the factored case (see equation (4))

D(m)
i j = −δ(m)i a(m)j ; C (m)

i j =
(
δ
(m)
i − B(m)i

zm

)
a(m)j ; B(m)i = 2π

∑

k

ρk g(m)ik δ
(m)
k . (25)

We remember that [26]

2πσi j gi j(σi j) = q ′
i j(σ

−
j i )− q ′

i j(σ
+
j i )

= A j(σi/2)+ β j −
M∑

m=1

(
zmδ

(m)
i − B(m)i

)
a(m)j e−zmσi j (26)

and

q̃i j(i s) = e−sλ j iσ 3
i ψ1(sσi )A j + e−sλ j iσ 2

i φ1(sσi )β j −
∑

m

e−zmλ j i

s + zm

×
(
δ
(m)
i + (B̂(m)i − δ

(m)
i )

{
1 − e−(zm+s)σi [1 + zmσiφ0(σi s)]

})
a(m)j (27)

which can be written in the form

Mi j (s) = δi j − ρi qi j(i s) = δi j − ai b j − ci d j −
M∑

m

e(m)i f (m)j ≡
M+2∑

α=1

a(α)i b(α)j (28)

with

ai = ρiσ
3
i ψ1(sσi )e

sσi /2; b j = A j e
−sσ j /2 = A0

j e
−sσ j /2 + π




∑

n

a(n)j P(n)e−sσ j /2

ci = ρiσ
2
i φ1(sσi )e

sσi /2; d j = β j e
−sσ j /2 = β0

j e
−sσ j /2 + 2π




∑

n

a(n)j 

(n)e−sσ j /2

e(m)i = ρi e
sσi /2σ 2

i ϕ
(m)
1 (sσi ); f (m)j = a(m)j ezmσ j /2

ϕ
(m)
1 (sσi ) = ezmσi/2

s + zm

{B(m)i

zm
− e−zmσi

(B(m)i

zm
− δ

(m)
i

)[
1 + zm

s
(1 − e−sσi )

]}
.

(29)
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Notice that equation (22) can be written as

q̃0′
ik(i s) = −ãi bk − c̃i dk −

M∑

m

ẽ(m)i f (m)k ≡ μ̃i j =
M+2∑

α=1

ã(α)i b(α)j (30)

with

ãi = (1 + sσi/2)

s2
e−sσi /2; c̃i = e−sσi /2

s

ẽ(m)i = e−sσi /2
zm

s + zm
X (m)

i ; X (m)
i ≡ e−zmσi

(
B(m)i

zm
− δ

(m)
i

)
.

(31)

With this notation we can rewrite equation (21) as

2π g̃i j(s) =
∑

k

μ̃ik
[Mi j(s)

]−1
. (32)

After some algebra we get the general and simple result

2π g̃i j(s) = − μ̃i j(s)

Dτ (s)
(33)

with

Dτ = Det

∣∣∣∣∣δα,β −
(
∑

i

a(α)i b(β)i

)∣∣∣∣∣ . (34)

4. Selected applications

We now apply the general result equation (33) to a few selected examples of interest:

4.1. The polydisperse hard sphere mixture

For hard spheres

A j = 2π




[
1 + πζ2

2

σ j

]
= 2π




[
1 + ζ2

2
β j

]

β j = π



σ j .

Then we get, using the definitions of equations (28)–(31)

ai = ρiσ
3
i ψ1(sσi ) b j = A0

j

ci = ρiσ
2
i φ1(sσi ) d j = β0

j
(35)

and also

ãi = (1 + sσi/2)e
−sσi /s2

c̃i = e−sσi /s.
(36)

The pair correlation function is

2π g̃i j(s) = −e−sσi j

s2 Dτ

{
1 + s

[
(QH S)′i j(σi j )

]}

Dτ = 1 −
∑

j

ρ jσ
2
j

{
σ jψ1(sσ j )A

0
j − φ1(sσ j )β

0
j + 4π2


2

∑

i

ρiσ
3
i ψ1(sσi )φ1(sσ j )λ j i

}
.

(37)
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4.2. The electrolyte limit

We take the limit [27]

zm = 0 (38)

of the general definitions. Then,

ai = ρiσ
3
i ψ1(sσi ) b j = A0

j + π



a0

j Pn = A j

ci = ρiσ
2
i φ1(sσi ) d j = β0

j + a0
j
N = β j

e(0)i = ρi e
sσi /2σ 2

i ϕ
(0)
1 (sσi ) f (0)j = a(0)j e−sσ j /2

ϕ
(0)
1 (sσi ) = 1

s

{
π



Pnφ1(sσi )− X (0)

i [1 + φ0(sσi )]
}
.

(39)

Moreover

q̃0′
i j (i s) = [(1 + sσi/2)A j + sβ j ]e−sσi j /s2 −

∑

m

zm

s + zm
e−(s+zm )σi j C (m)

i j

= e−sσi j

s2

{
[(1 + sσi/2)A j + sβ j ] + sB(0)i a(0)j

}

= e−sσi j

s2

{
[(1 + sσi/2)A

0
j + sβ0

j ] + sX (0)
i a(0)j

}
. (40)

For equal size mixtures X (0)
i = Xi and

ãi = (1 + sσi/2)

s2
e−sσi /2

c̃i = e−sσi /2

s

ẽ(0)i = zm

s + zm
e−(s)σi /2e−zmσi (B̂(m)i − δ

(m)
i ) ⇒ 1

s
e−sσi /2B(0)i

(41)

so that from equation (33) we get the symmetric expression (compare [20])

2π g̃i j(s) = − μ̃i j

Dτ

= − e−sσi j

s2 D±

{
1 + s

[
σi

2
A0

j + β0
j + X (0)

i a(0)j

]}
(42)

with

D± = Det

∣∣∣∣∣

1 − (ab) −(ad) −(a f )
−(cb) 1 − (cd) −(c f )
−(eb) −(ed) 1 − (e f )

∣∣∣∣∣ (43)

where the scalar products (see also [20]) are defined by

(ab) =
∑

i

ai bi , (cd) =
∑

i

ci di , (e f ) =
∑

i

ei fi . . . (44)

and we use the definitions of equation (39).

5. The primary closure

The MSA closure condition obtained from equation (7) is

2πK δ(n)i δ
(n)
j /zn =

∑

	

D(n)
i	 [δ	j − ρ	q̃ j	(izn)]. (45)
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Using the results of the last section we obtain [34]

2πK δ(n)j + zn

∑

	

I(n)j	 a(n)	 −
∑

m

zn

zn + zm

×
{
∑

k

ρka(n)k a(m)k

}[
∑

	

J (n)
j	 [�(m)

	 − zm X (m)
	 ] − I(n)j	 X (m)

	

]
= 0. (46)

6. The one component case: an explicit continued fraction solution

In the one component case equation (46) is simply [34]

−2πKnρ [Xn]2 = znβn

[
1 +

∑

m

1

zn + zm
βm

]
(47)

with

Xn = δn

I(n) + �nJ (n)
(48)

βn = ρan Xn . (49)

In the diagonal approximation we get explicit equations for the scaling parameters βi [14] (see
appendix III, [14]). We recall that

J (n) = σφ0(znσ)+ ρ
J,(n) (50)


J,(n) = −2π



σ 4ψ1(znσ) (51)

and

I(n) = 1 + ρ
I,(n) (52)


I,(n) = σ 2φ0(znσ)
π

2

σ − 2π



σ 3ψ1(znσ)

[
1 +

(
ζ2
π

2


)
σ + σ zn/2

]
(53)

and we have used the definition (76).
The solution of the β equations is obtained solving the linear equation [14]

�β =
[
M̂

]−1 · 2�� (54)

where

M̂ =
⎡
⎢⎣

1 1 − γ12 1 − γ13 .

1 + γ12 1 1 − γ23 .

1 + γ13 1 + γ23 1 .

. . . .

⎤
⎥⎦ ; �β =

[
β1

β2

.

]
; �� =

[
�1

�2

.

]
(55)

and

γnm = 2�n + zn − 2�m − zm

zm + zn
. (56)

We give the solutions for the first few cases [14]:

(i) one Yukawa β1 = 2�1

(ii) two Yukawas

β1 = 2�2 − βs

γ12
β2 = −2�1 + βs

γ12
βs = 2�2 − 2�1

γ12
(57)
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(iii) three Yukawas: this case is slightly more complicated. The resolvent is

�μ(3;1) =
(
γ23

γ31

γ12

)
, (58)

so that the explicit solution is

β1 =
[

1

d3

][
γ23

(
2�� · �μ(3;1)

d3
+ s23

)
− z23

]

β2 = −
[

1

d3

][
γ13

(
2�� · �μ(3;1)

d3
+ s13

)
− z13

]

β3 =
[

1

d3

][
γ12

(
2�� · �μ(3;1)

d3
+ s12

)
− z12

]
(59)

where d3 = γ12 + γ23 − γ13.

βs = 2�� · �μ(3;1)

d3
. (60)

The general case of n � 3 can be found in the work of Blum et al [14, 38].

6.1. The one Yukawa case

In the one Yukawa, one component case [27] the closure equation is simply

−2πρK1[X1]2 = z1β1

[
1 + β1

2z1

]
; (61)

so that putting it all together we get the equation

y1 = 2�1(�1 + z1)
[I(1) + �1J (1)

]2 ; y1 = −2πρK1δ
2
1

z1
. (62)

The physical branch yields the recursion relation

�
(1)
1 = y1

2z1
[I(1)]2

; �
(n+1)
1 = y1

2(�(n)1 + z1)
[I(1) + �

(n)
1 J (1)

]2
. (63)

For large z1 � 3, we may disregard the exponential terms in equations (76), and then we
get the simple

I(1) = 1 + 2πρ
(
1 + πρ

3 − π z1ρ

4

)

z3
1


2
; J (1) = 1

z1
+ πρ (−2 + z1)

z3
1


(64)

from where

�1 = y1

2z1

(
1 − π2ρ2

2z2
1


2 + 2πρ(3+πρ)
3z3

1

2

)2 ; �2 = y1

2(�1 + z1)D2
�,1

(65)

with

D�,1 = 1 + 1

z2
1


⎡

⎢⎣
−(π2ρ2)

2

+ 2πρ

(
1 + πρ

3

)

z1

−

2y1

(
−
+ 2πρ(2−z1)

z2
1

)

(
2 − π2ρ2

z2
1


2 + 4πρ(1+ πρ

3 )
z3

1

2

)2

⎤

⎥⎦ .

The solution is always convergent for the attractive case, and we do get the Onsagerian
limits for large densities and zero temperature correctly. This has been successfully tested
numerically against other numerical methods [37] and Hernando (unpublished, but using
Pastore’s criterion). For the repulsive case K > 0 this equation has poles and unphysical
divergences occurring when the Onsagerian limits are attained. These divergences are removed
when a suitable reference hard core is introduced.
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6.2. The multi-Yukawa case

The above solution is valid for any number of Yukawas n � 1. We write equation (47) in
matrix form:

[ y1

y2

.

]
=

[ 1 + β1/s11 β1/s12 .

β2/s12 1 + β2/s22 .

. . .

][
β1

β2

.

]
. (66)

Using equations (54) and (55) we find

�� = 1

2
M̂ ·

[ 1 + β1/s11 β1/s12 .

β2/s12 1 + β2/s22 .

. . .

]−1

·
[ y1/[I(1) + �1J (1)]2

y2/[I(2) + �2J (2)]2

.

]
(67)

with

snm = zn + zm .

This relation is the extension of equation (63) to the multi-Yukawa case: the iteration follows
exactly the same steps, only now we have to use the extra equation (54): the first iterate is

��(0) = 1

2

⎡
⎢⎢⎣

1 1 − z12
s12

1 − z13
s13

.

1 + z12
s12

1 1 − z23
s23

.

1 + z13
s13

1 + z23
s23

1 .

. . . .

⎤
⎥⎥⎦ ·

[ y1/[I(1)]2

y2/[I(2)]2

.

]
; znm = zn − zm (68)

and then

��(n+1) = 1

2
M̂(n) ·

⎡

⎣
{ 1 + β1/s11 β1/s12 .

β2/s12 1 + β2/s22 .

. . .

}(n)⎤

⎦
−1

·
⎡

⎣
y1/[I(1) + �

(n)
1 J (1)]2

y2/[I(2) + �
(n)
2 J (2)]2

.

⎤

⎦ (69)

where the superscript (n) indicates the level of the iteration.

7. Summary of results

• A new formulation of the pair distribution function for a large class of systems represented
by a multi-Yukawa closure of the Ornstein–Zernike equation (1), which includes systems
such as water, ionic mixtures, ion channels and polymers, is presented. This formulation
is considerably simpler and more explicit than those in the literature because it involves
directly measurable parameters such as the contact pair distribution function. It is also
capable of handling the new improved versions of the MSA and the realistic octupolar
model of water [7].

• The new result shown in equation (2) is simple and explicit: for example in the case of the
SANS and SAXS experiments [1, 2] our result shows explicitly the connection between
the number of peaks in the diffraction spectra and the theoretical formula, because we get
for dilute systems a sum of M Lorentzians, one for each Yukawa term in the closure.

• The one component case has been discussed in several papers, largely in collaboration
with Hernando [6], although most of the numerical results are still unpublished. The
conclusion is that once the branch points are identified the continued fraction formalism
always converges (see also [37]).
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Appendix A. The algebraic solution of the general Yukawa closure of the
Ornstein–Zernike equation

We quote the results from the review of Blum and Hernando [34]. The solution of the system
of equations (19), (20) yields

A j = A0
j + π




∑

n

a(n)j P(n); β j = β0
j + 2π




∑

n

a(n)j 

(n) (70)

where

A0
j = 2π




[
1 + (1/2)ζ2

π



σ j

]
; β0

j = π



σ j (71)

π



P(n) = 1

zn

∑

	

ρ	

[
A0
	X (n)

	 + 2β0
	 (zn X (n)

	 −�
(n)
	 )

]
(72)


(n) = − 1

z2
n

∑

	

ρ	

[
X (n)
	 (A

0
	 − znβ

0
	 )+ 2β0

	 (zn X (n)
	 −�

(n)
	 )

]
. (73)

We have

�
(n)
j = B̂(n)

j +
(n) + π

2

σ j P(n);

X (n)
i = δ

(n)
i + σi B̂(n)

i φ0(znσi )+ σi

(n)

(74)

�
(n)
j = ξ̂

(n)
j +

∑

	

Î(n)j	 B̂(n)
	

X (n)
j = γ

(n)
j +

∑

	

Ĵ (n)
j	 B̂(n)

	

(75)

where

Î(n)j	 = δ j	 − ρ	σ
2
	 [β0

jφ1(znσ	)+ A0
jσ	ψ1(znσ	)]

Ĵ (n)
j	 = δ j	σ jφ0(znσ	)− 2ρ	β

0
jσ

3
	 ψ1(znσ	)

(76)

with

ξ̂
(n)
j = − 1

z2
n

∑

	

ρ	δ
(n)
	 [A0

j + zn Q′(σ	j )]

γ̂
(n)
j = δ

(n)
j − 2πσ j

z2
n


∑

	

ρ	δ
(n)
	

(
1 + znσ	

2

)
.

(77)

Here we define [34]

ζn =
∑

k

ρkσ
n
k (78)


 = 1 − πζ3/6 (79)
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g̃i j(s) =
∫ ∞

0
dr rgi j(r)e

−sr (80)

γ
(n)
i j = 2π g̃i j(zn)ρ j/zn (81)

B̂(n)
j =

∑

i

znδ
(n)
i γ

(n)
j i eznσi j (82)

ψ1(sσi ) = 1
2 [γz(3, sσi )− γz(2, sσi )]

φ1(sσi ) = [γz(2, sσi )− γz(1, sσi )] (83)

with the incomplete γ function

γz(n, z) = (n − 1)!
zn

[
1 − e−z

n−1∑

i

zi

i !

]
. (84)

Appendix B. Inverse of Mij (s)

M̂i j (s) = δi j − μi j; μi j =
αm∑

α=1

a(α)i b(α)j . (85)

The determinant of this matrix can be expanded in its minors Mi j

DT = Det |δi j − μi j | =
∑

i

[δi j − μi j ](−)i+ jMi j; ∀ j. (86)

This determinant can also be condensed into a simpler and more compact form

DT = Dτ =
∣∣∣∣∣δα,β −

(
∑

i

a(α)i b(β)i

)∣∣∣∣∣ (87)

which can also be expanded in its minors M(α,β)

Dτ =
∑

β

(
δα,β − a(α) • b(β)

) [−]α+βM(α,β); ∀α

=
∑

β

(
δα,β − a(α) • b(β)

)A(α,β); A(α,β) = [−]α+βM(α,β). (88)

Using Cramer’s rule we then find the general inverse

[M−1(s)]i j = δi j + 1

Dτ

∑

β

a(α)i b(β)j

{A(α,β)
} ; ∀{α, β} (89)

∑

k

{δik − μik} · [M−1(s)]k j = δi j

∑

k

{δik − μik} ·
[
δi j + 1

Dτ

∑

β

(−)α+βa(α)k b(β)j

{M(α,β)
}] = δi j

∑

k

[∑

γ

a(γ )i b(γ )k

]
.

[
1

Dτ

∑

β

a(α)k b(β)j

{A(α,β)
}] = μi j

(90)

which means that it must satisfy

μi j =
∑

γ,β

a(γ )i b(γ )j

[
1

Dτ

∑

k

b(γ )k a(α)k

]
A(α,β)

∑

k

(
μik[M−1(s)]α,βi j

)

=
∑

α

a(α)i

∑

k

b(β)k

(
− 1

Dτ

∑

γ

a(γ )k b(δ)j

{Aγ,δ

}
)

; ∀δ
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= 1

Dτ

∑

β

(−)α+βa(α)i b(β)j

{M(α,β)
}

+
∑

α

a(α)i

(
− 1

Dτ

∑

γ

[∑

k

b(β)k a(γ )k

]{Aγ,δ

})
b(δ)j ;

= μi j (91)

as it should.
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